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Abstract: The AlCD (associate-induced circular dichroism) model is applied to a consideration of the circular dichroism of the 
d-d transitions of chiral metal complexes. The unique problems associated with simple static and dynamic coupling models 
are discussed, and it is shown that purely dipolar terms arising from second-order perturbation theory lead to new mechanisms 
which are postulated to predominate in leading to the CD activity of d-d transitions. The new mechanisms are conceptually 
simple, and exploit the low-lying charge transfer states that are characteristic of many metal complexes as intermediate states 
in the induction process. Detailed selection rules are derived, and the model is applied to a number of series of complexes. Good 
agreement with experiment is obtained, without the necessity of complex calculations. The model predicts the additivity of the 
CD of many complexes, and suggests that empirical sector rules for metal complex systems have little theoretical foundation. 

Introduction 

Circular dichroism has long been recognized as a powerful 
tool in the study of the stereochemistry of metal complexes and 
organic compounds. In general, the CD induced in an archiral 
chromophore by a chiral environment will reflect certain 
properties of the chirality of the overall molecular structure 
which, in turn, are a function of the environmental stereo­
chemistry. In this way, direct correlations between structure 
and CD spectra will exist, so that CD has become a sensitive 
stereochemical probe. Much of the correlative work in the past, 
however, has been empirical, but despite the success of em­
pirical sector rules for certain series of compounds, there are 
sufficient inconsistencies in their use to necessitate a proper 
theoretical understanding of the mechanisms leading to the 
CD. Only through a knowledge of the exact mechanisms and 
consequently the elucidation of the environmental paramaters 
leading to the CD (e.g., should sector rules be adding charges 
or polarizabilities in the various sectors) can reliable C D / 
structure correlations be defined. 

To elicit the various induction mechanisms, it is necessary 
to postulate some model for the molecular system. The CD 
strength of a transition G -* E (where G designates the ground 
state of the overall complex and E the excited state at which 
transition energy the CD appears) may be defined as 

RGE = \m((G\n\E)- ( £ | m | G ) ) (D 
where fi and m are the electric and magnetic dipole operators 
for the system as a whole, and may be thought of as the mo­
ments interacting directly with the radiation field. The first 
approach may be referred to as the complete MO (molecular 
orbital) model, and is equivalent to treating the entire complex 
as a single entity characterized by its molecular wave functions 
G and E. The CD is calculated directly as matrix elements over 
these wave functions using eq 1 above, the wave functions being 
determined by one of the available approximate MO treat­
ments. Such an approach has a number of associated disad­
vantages. The calculations are time consuming, and often in­
volve a lot of wasted effort in calculating quantities which 
ultimately cancel in the determination of the final CD. They 
are not readily transferable from one complex to another, and 
it is generally difficult to extract physical information from 
such a calculation about the exact nature of the induction 
mechanism, unless the basis set has been carefully chosen 
(which would usually require some preliminary knowledge of 
the induction mechanism). Such MO methods are best used 
as a test for or in conjunction with the second approach to be 
described, or for small systems where a separable chromophore 

model is inappropriate. The second approach, and the one 
adopted in this paper, involves the separation of the molecular 
system into a finite number of distinct chromophores, and may 
be referred to as the separable chromophore model. Each 
chromophore is characterized by its free-chromophore wave 
functions, and there is assumed to be negligible electron overlap 
between functions on different chromophores. In this way, all 
electronic integrals over molecule states reduce to matrix el­
ements over the free chromophore functions. This model has 
been widely used,1 6 and overcomes the disadvantages of the 
complete MO model as the terms responsible for the induced 
CD may be explicitly derived. The physical interpretation of 
a particular mechanism is manifest as an interaction between 
multipole matrix elements on the chromophores with each 
other and with the radiation field. The model is subject to 
limitations of application to systems where the exchange terms 
(electron overlap) between the chromophores are negligible, 
and we shall see that for most complexes the chromophores 
may be chosen so that this is indeed the case. 

The current separable chromophore models of the CD of 
achiral chromophores in chiral environments fall into two main 
categories (the static coupling (SC) and dynamic coupling 
(DC) models), and both may be developed using the Rosenfeld 
equation (eq 1) above.1 We initially consider the complex or 
molecule as comprising the achiral chromophore A (with free 
chromophore states t) coupled via the electrostatic interaction 
operator V to a single perturbing chromophore B (with free 
chromophore states u). IfG corresponds to the system state 
where both A and B are in their ground states t = 0, u = 0, and 
E to the system state where only A is excited to the state / = 
s, the system states may be expressed in terms of the free 
chromophore states by using perturbation theory. Defining the 
product states 

\tu) = I r ) Iu) , (tu\ = (t\ (u\ (2) 

the system states become, to first order in perturbation theo­
ry. 

\E) = \s0) + £ — ^ r U"> 
t,u (Es -E1 — Eu) 

with s = 0 for G, and 

VAB(ts,uO) = (tu\V\sO) 

(3) 

(4) 

The CD strength for the perturbed 0 —>- s transition follows 
simply from the substitution of G and E, noting that the 
zero-order term not containing V vanishes (as A is achiral), 
and retaining only terms that are first order in V. As we shall 
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only be interested in magnetic dipole allowed transitions (the 
d-d transitions of metal complexes being electric dipole for­
bidden in the free ion), the CD strength for a magnetic dipole 
allowed, electric dipole forbidden transition may be written, 
to first order in K as in eq 5, where mA° = <5|WA|0> and so on. 
Real wave functions have been assumed, and mA, MB, etc., are 
respectively the magnetic and electric dipole operators on the 
subscripted chromophores. The energies are now transition 
energies relative to the respective ground states. 

R _ I n rfKAB(0/.00)/ig , VABQS.OO)^] 

KQX Im 1 

tul ~ is1 J 
Two types of contributions may be distinguished in the above 

expression which are directly the basis of the static and dy­
namic coupling models: (1) those involving only permanent 
moments on B, so that transition moments are borrowed from 
A itself due to the mixing of A states by the static field of B 
(these are the static coupling terms, and are those contribu­
tions in curly brackets in the above equation); (2) those in 
which transition moments are borrowed from B, the pertur­
bation acting to link the A and B states (these are the dynamic 
coupling terms, and are given by the last term in eq 5). The two 
models (SC and DC) are thus complementary in describing 
the total CD strength in first order. 

Higher multipole participation arises through the expansion 
of V as a multipole series 

V = Kdd + Kdq + Kqq + . . . (6) 

where terms involving the charge may be neglected in this 
two-chromophore case, Kdd is the dipole-dipole interaction 
term, Kdq the dipole-quadrupole term, and so on. This ex­
pansion is usually fairly rapidly convergent, so that contribu­
tions from successively higher multipoles rapidly decrease in 
magnitude. 

The two approaches to the CD of the d-d transitions are 
based on these static and dynamic coupling models. The static 
model was first applied to complexes by Moffitt,7 and is a 
natural extension of crystal field theory. The metal ion is 
postulated as constituting the achiral chromophore, and its free 
ion states are mixed through perturbations describing the in­
teractions with the ligand environment represented by a 
crystal-field type expansion (i.e., as a chiral electrostatic charge 
distribution). This model has been studied more recently by 
Richardson,6'7 who has concluded that it is inadequate in its 
description of the d-d CD activity because of the unrealistic 
dependence on the metal-ligand separation. The dynamic 
coupling model, which involves a dynamic coupling between 
the metal ion chromophore transition moments and those on 
the ligand groups, has been postulated by Mason.5 In this 
model, the electrostatic effects of the ligand environment are 
neglected. This appears to have some agreement with the ob­
served experimental results. 

Both these approaches are elegant in their conceptual sim­
plicity, but suffer from a common difficulty which ultimately 
stems from the high symmetry of the achiral chromophore. In 
both cases, the achiral chromophore must have an allowed 
magnetic and at least one allowed electric moment. In general, 
the d-d transitions are electric dipole forbidden, so that in the 
case of the DC model, a higher d-d electric transition multipole 
must participate. For most complexes, the first nonvanishing 
moment is the hexadecapole, because of the approximate Oh 
symmetry of the ion. Similar arguments show that analogous 
electric moments are required for the SC mechanism. The 
magnetic moment is dipolar in both models, which agrees with 
the empirical observation that only the magnetic dipole allowed 
d-d transitions exhibit appreciable CD activity. The underlying 

problem in applying these models to d-d transitions may now 
be clarified in the following way. For increasingly higher 
symmetry of the achiral chromophore, it is necessary to go to 
increasingly higher multipole interactions (Kdh where h is the 
hexadecapole moment) before getting a nonzero interaction. 
We have already seen that such interactions would be much 
less than, say, the Kdd contribution if it were allowed by 
symmetry. However, if we do not restrict the treatment to 
first-order perturbation theory, it is quite possible that we could 
get terms quadratic in Kdd which, because of the different 
symmetry requirements resulting from the participation of new 
intermediate states, do not necessarily vanish and thus could 
still be appreciably larger than the relatively weak Kdh terms 
arising from first-order perturbation theory. That such con­
tributions in the dipole-dipole approximation are in fact 
symmetry allowed turns out to be the case, and, for reasons 
that will become apparent later in this paper, they are large for 
metal complexes because of the characteristic nature of tran­
sition metal electronic states. 

In this paper, the dipole approximation is retained for both 
electric and magnetic transition moments, and it is found that, 
to second order in perturbation theory, purely dipolar terms 
arise provided that charge transfer states are included in the 
definition of the achiral chromophore. Some of these terms are 
of mixed static/dynamic character, and cannot therefore be 
deduced from purely DC or SC models, even if independently 
taken to higher order in perturbation theory. 

It is not the purpose of this paper to develop the AICD 
theory in detail, as this has been done elsewhere.8 Instead, the 
applications to polar and nonpolar complexes are discussed, 
and it is shown that the AICD model provides a unified theory 
for the CD of the magnetic dipole allowed d-d transitions of 
a wide range of metal complexes. Furthermore, the results of 
the AICD model reduce naturally on averaging over all relative 
orientations of the interacting chromophores to the DICD 
(dispersion- or dissociate-induced CD) results, which have been 
shown to give good agreement with experimental results.9 It 
is hoped that this may lead to both a method of assigning the 
magnetic dipole allowed metal ion transitions (through the 
detailed selection rules derived herein), and also to the use of 
d-d CD spectra in reliably predicting stereochemistries of 
metal complexes. 

AICD of the d-d Transitions 
Definition of the Chromophores. In discussing the electronic 

properties of the d-d transitions of metal complexes, there are 
some important simplifying features which may be exploited 
in the development of theoretical models. This is particularly 
so in applying AICD theory, where the definition of the achiral 
chromophore is crucial to the utility of the model. The states 
of a typical complex illustrated in Figure 1 (where M is the 
metal ion, ABCCDD the directly ligating atoms, and XYZ 
substituted groups or chelate rings) may be partitioned in the 
following way. 

(1) The d States of the Metal Ion. These are centered on M, 
and are assumed symmetry adapted to the crystal or ligand 
field of the directly ligating atoms ABCCDD. They retain their 
d character so that transitions between the d states are assumed 
to be electric dipole forbidden, but some of them will be mag­
netic dipole allowed. Although there will be some overlap with 
the states of the directly ligating atoms, any overlap with the 
ligand substituents XYZ may be safely ignored. Any other free 
ion states (such as s, p, f states) will be completely neglect­
ed. 

(2) The Charge Transfer States. These will essentially in­
volve the MABCCDD wave functions, and only in exceptional 
circumstances (e.g., unsaturated chelates) may overlap with 
less remote ligand substituents. In general, we shall assume 
negligible overlap with the XYZ states, or absorb substituents 
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Figure 1. Model of an arbitrary complex of Ci symmetry, M is the metal 
ion, ABCCDD the directly ligating atoms, X a monodentate substituent, 
and Y,Z bidentate chelates. 

for which this is not the case into the definition of the charge 
transfer state. The lowest lying charge transfer states, which 
will be of most importance in the AICD theory, may generally 
be approximated as a transition from a single ligating atom 
orbital to a single metal ion d state (or suitable combinations 
where degeneracies occur) if the charge transfer is ligand to 
metal, or vice versa if it is metal to ligand. 

(3) The Substituent or In-Ligand States. These are localized 
on the ligands proper or on any other substituents. As these 
provide the chiral perturbation in the AICD model, it is suf­
ficient that only those groups that lead to the chirality of the 
complex have negligible overlap with the states defined in (1) 
and (2) above. These states may be localized substituent states, 
or, in the case of many chelate systems, exciton states of cou­
pled chelate systems. It is important to recognize that the 
substituent or in-ligand states include the ground state, and 
the ground state properties of these groups may be replaced 
by their permanent moments or equivalently their total re­
sultant electric field at the central metal ion. This will become 
more meaningful anon. 

We are now in a position to define the chromophores that 
are the basis of the AICD model more precisely. The achiral 
chromophore (which we shall designate by A) may be taken 
to be that system which gives an adequate description of the 
states (1) and (2) above, and thus will effectively be the 
MABCCDD system (see Figure 2). If the metal ion/directly 
ligating atom system is itself chiral, then this model is not 
suitable for the calculation of the d-d CD, and it is better to 
resort to direct MO methods as discussed earlier. The sym­
metry of the achiral chromophore will thus be that of the 
MABCCDD system, and must be that of one of the achiral 
point groups. The d and charge transfer states should therefore 
transform as the irreducible representations of this point group 
GA- In the determination of this point group, it is important 
to define when ligating atoms are identical. Thus NH2, 
NH(CH2)HN nitrogens are identical, as chelation will only 
have a minimal effect on the charge transfer states. In general, 
chemical intuition should be sufficient to determine whether 
two ligating atoms are, as far as the d and charge transfer states 
are concerned, identical. For the example in Figure 2, GA will 
be Ci0. The remainder of the ligand system constitutes the 
chiral perturbation, and is subdivided into separate chromo­
phores as best befits the particular ligand system. The total 
perturbing ligand system (see Figure 2) must have the sym­
metry of one of the chiral point groups Ge­

lt is now possible to develop the AICD model for this type 
of system. To establish a notation, the d-d transition at which 
the CD appears will be denoted by 0 —«• s, where 0 is the ground 
state and s the excited d state. The charge transfer states of A 
will be denoted by t, and the transition energies relative to the 
ground state by es, t,. For the mechanisms that we shall discuss, 
the perturbing ligand system may be adequately represented 
by (1) the static electric field E of the whole ligand system at 
the metal ion; (2) the excited states u,v (where 0 designates the 
ground state) of each chromophore B in the ligand system. It 
will be seen directly that only chromophores with strongly al-
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Figure 2. Division of the complex into separate chromophores. The achiral 
chromophore contains only M and the directly ligating atoms and has Cu 
symmetry. X, Y, and Z constitute the perturbing chromophore system, 
which has an overall Ci symmetry. 

lowed electric dipole transition moments from the ground state 
need be considered. 

The AICD of the magnetic dipole allowed 0 -»• s transition 
of A appearing at the transition energy es may then be written 
as eq 7-10 where Atts - e, ~ ts, tw ~ et + €v> ar>d the inter­
action operator has the form of eq 11. The n and m are the 
electric and magnetic dipole operators, respectively, on the 
subscripted chromophore, TAB is the vector joining the origins 
of A and B, and the cap denotes the unit vector. 

^ = Im[^]^-n,A° (7) 

^ = - I m r 2 { " K A B ( 0 ^ Q " ) l ^ ° - n i A 0 (8) 
L Aeuseus J 

^--imr^.y-Ei r < (9) 
L AtusAe,s J 

Ri = -lm\V^{0t'm)V^{tS'°V^^.mf (10) 
L Afus(e,D - es) J 

^ M A - M B - S ^ A - f A B M B - r A B ( n ) 

' 'AB 

The contributions to the CD strength are subscripted by the 
order of perturbation theory from which they derive, and the 
superscript denotes whether the contribution is due to static 
coupling (s), dynamic coupling (d), or a mixture of the two 
(s,d). The two moments outside the brackets may be thought 
of as the moments interacting directly with the radiation field, 
and will be referred to as the field response moments. The other 
moments are either coupled to each other via the interaction 
operator V, or to the static field. Note that the field response 
moments are usually on different chromophores. Thus the 
electric moment which must come from A in the SC model 
(and leads to the necessity of using higher multipole moments) 
is here allowed to be on one of the perturbing chromophores 
provided that the states of A and B are coupled in some way. 
The above terms are only the leading terms in the close levels 
approximation (i.e., those which predominate if Ae « e), but 
will suffice for our applications. Summations over t and u are 
implied, omitting states with zero energy denominators. De­
generacies are taken to be retained and not split by the chiral 
interaction, so that the numerators may be summed separately 
over the components of a degenerate state for a fixed energy 
denominator. 

We must resist the temptation of discussing these contri­
butions in detail at this stage, for a number of them vanish on 
symmetry grounds, and the remainder may be simplified by 
similar arguments. These symmetry considerations form the 
substance of the following section, after which the various 
mechanisms can be treated in greater depth. 

Generalized Selection Rules for AICD 
The expressions for AICD have the general form 

F= aF^Fc 
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where FA contains all the matrix elements centered on A, Fc 
all matrix elements centered on B and the static field, and a 
all other quantities such as energy and radial denominators. 
As A is achiral, it must transform according to one of the 
achiral point groups, GA- Group theory then restricts the 
possible combinations of operator and state symmetries that 
give finite values of the matrix element product FA- The defi­
nition of these symmetry conditions may be referred to as the 
generalized selection rule for FA- Consider, for example, the 
matrix element product arising from R2: 

{0\nA\t)(t\nA\s)-{s\mA\0) 

The selection rule is derived in two stages: (1) the operator 
selection rule which defines the polarizations of the dipole 
operators that are allowed under GA; (2) the state selection 
rule which defines the allowed symmetries ofs and t for a given 
ground state symmetry. 

The operator selection rules are most restrictive, and are 
based on the following theorem, which will be discussed in 
detail in a later paper. 

If P0 is the projection operator for the totally symmetric 
representation of GA, and 

FA= L Kl/MHXHI^I-.. IPNW1) 
yX . • 

p° n Pa = n p'a 
a a 

then 

PA= E (a'y\P\\bi)(bi\P'2\... \PN\a\) (12) 
"y,\, . . 

The basis functions for A are assumed to be bases for the ir­
reducible representations of GA, such that b{ transforms as 
the Xth row of the7th irreducible representation TA The sum 
over 7,X,... is over all degeneracies. 

The importance of this theorem is that only operator prod­
ucts that are totally symmetric to all operations of GA lead to 
finite matrix element products. The operator products then 
obey the same selection rules as the corresponding macroscopic 
tensors. The latter have been studied in detail by Birss,1' and 
the relevant nonvanishing products for the AICD contributions 
are given in the Appendix in a convenient form using standard 
chemical notation for most of the common point groups. 

The use of these operator selection rules is by no means re­
stricted only to A. If the system C perturbing A also possesses 
some symmetry, the rules may be applied directly also to Fc-
The operator selection rules are generally extremely restrictive, 
and the definition of the state selection rules is usually trivial 
once the operator selection rules have been determined; they 
follow from the usual condition that, for a typical matrix ele­
ment {b{\P'a\ai), 

where Ta is the irreducible representation generated by Pa, and 
r 0 is the totally symmetric representation of GA-

These selection rules may now be applied directly to the four 
contributions of eq 7-10. The first-order merchanisms which 
lead to the SC and DC models in their simplest form are dis-
cribed by R\ and /?f, respectively. The static term contains the 
matrix element product 

and requires parallel polarization components of the field re­
sponse moments (which are both on A). The dynamic term 
requires finite matrix element products of the form 

From the tables of the Appendix, it follows that these contri­

butions are restricted to only a small number of achiral point 
group symmetries (Cn/,, S2n, C3,,, Did for R]; Cnv, S4 for R'j). 
As the state selection rules usually add more restrictions, and 
as most of the achiral chromophores we shall consider have a 
higher symmetry, we shall not consider these mechanisms 
further. Note, however, that if we replace one of the electric 
dipole moments by a higher moment (e.g., hexadecapole under 
On), then these operator products become allowed. This is, of 
course, the basis of the earlier approaches to d-d CD. 

The second-order terms /?|'d and R2 contain a common 
matrix element product of the form 

MAVAiHA3 (13) 

A cursory glance at the relevant table in the Appendix shows 
that certain polarization combinations of this operator product 
are allowed for all point groups, so that these mechanisms will 
be allowed for any achiral chromophore. In fact, for most 
symmetries, the operator selection rules require that the three 
moments in the above product be mutually orthogonal. Al­
though initially this may seem somewhat restrictive, it is ac­
tually an extremely significant result, for the state selection 
rules then restrict the states t that can act as intermediates for 
a particular 0 —* s transition. Thus a certain magnetic dipole 
allowed d-d transition will only be CD active if there is a 
charge transfer state of the appropriate symmetry and suffi­
cient intensity. The state selection rules under these constraints 
have been tabulated elsewhere, as the same matrix element 
product appears in DICD theory.9 

The Second-Order AICD Mechanisms 
The use of the separable chromophore model and the par­

ticular definition of the various chromophores leads to an ex­
plicit separation of the matrix element product on A and that 
describing the chiral perturbation of the ligand system, al­
lowing us to discuss these factors separately. A further sim­
plification arises from the dependence of both mechanisms on 
the same matrix element product (eq 13) on A, so that it is 
possible to discuss the A factor in a general way without re­
course to the particular mechanism. The relative importance 
of the two mechanisms depends exclusively on the particular 
properties of the ligand system, to which we shall return 
anon. 

The Magnetic Inducibility of A. From the operator selection 
rules, it follows that the general matrix element product on A 
(eq 13) is finite only for mutually orthogonal moments. In 
many cases, it is possible to incorporate this condition into the 
form of the matrix element product itself, which then be­
comes 

fW*,0 = MA5 X /A' • mj? (14) 

This quantity also appears in DICD theory,12 and is referred 
to as the magnetic inducibility, being the ability of a magnetic 
dipole allowed transition to have CD induced into it by a chiral 
perturbation through the particular intermediate state t. The 
intermediate state must be strongly electric dipole allowed 
from the ground state, and be relatively close energetically to 
the d-d transition of interest, a requirement that follows from 
considerations of the energy denominators. These are precisely 
the features of charge transfer states in metal complexes, and 
it is for this reason that it is vital to include such states in the 
definition of the achiral chromophore. It is also a rationale for 
the relative inability of higher free-ion states to act as inter­
mediates, as these are generally at considerably higher ener­
gies. 

As mentioned in the previous section, only charge transfer 
states of certain symmetry can act as intermediates for a given 
d-d transition. This may be exploited in the assignment of d-d 
transitions if the charge transfer states have been assigned, or 
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vice versa if the d-d transitions have been characterized by 
some other method.9 

The magnetic inducibility of A is the same for all complexes 
with the same metal ion/ligating atom configuration, so that 
a single computation of this quantity is in principle transferable 
to a range of complexes. Similarly, the source of the chiral 
perturbation is conveniently extracted into terms independent 
of A, allowing for comparative studies of quite different sub-
stituent groups. 

The Inducing Power. Comparison of the Two Mechanisms. 
The two different mechanisms Rl6 and R2

1 depend on different 
properties of the chiral ligand system. The matrix element 
product describing the ligand system may be generally referred 
to as the magnetic inducing power (the ability to induce CD 
in a magnetic dipole allowed transition). The two different 
chemical situations corresponding to these mechanisms are 
summarized in Figure 3. 

The /?!'d mechanism involves a mixed static-dynamic cou­
pling mechanism, and thus cannot arise from purely SC or DC 
models, even if independently taken to higher order of per­
turbation. It requires (1) a perturbing group B with a strongly 
electric dipole allowed transition polarized with components 
along both the magnetic transition moment on A, and the 
charge transfer transition dipole; and (2) a strong static field 
along n% (i.e., perpendicular to the plane of the magnetic and 
charge transfer moments of A). It is therefore restricted to 
complexes which are highly polar in character, and it is ques­
tionable whether sufficiently strong fields can be set up at the 
metal ion by the ligand system to make this an effective 
mechanism. 

The Rj mechanism is purely dynamic in character, and 
becomes important if there is a chromophore B with two 
strongly allowed electric dipole allowed transitions which are 
not parallel (preferably orthogonal). The matrix element 
product on B in this case has the form 

MB MB1MB 

Noting from eq 10 that /ig0 must have a component along /K°', 
and that /$, MB" and n'£, $ must each have finite dipole-dipole 
interactions as defined by eq 11, it follows that the inducing 
power for this mechanism is maximized if 

M°B" X ^ r - M B 0 (15) 

is maximized; i.e., the electric moments on B are all strongly 
electric dipole allowed and mutually orthogonal. In fact, the 
above product is generally allowed for all chiral point groups, 
and vanishes for achiral groups, so that it constitutes a general 
mechanism for any chiral center. The inducing power in this 
case may be thought of as a purely electric rotational or CD 
strength, as n X n is an axial vector like the magnetic dipole 
operator, and thus has similar transformation properties. To 
distinguish this inducing power from that of the Rj6 mecha­
nism, we shall refer to the expression of eq 15 as the dynamic 
inducing power. 

AICD Mechanisms for Metal Complexes 

There are two ways of applying the AICD theory to par­
ticular systems. 

(1) Quantitatively. This would involve MO calculations on 
the achiral chromophore in order to elicit exactly the magni­
tude and the sign of the matrix element product on A. This 
magnetic inducibility term also appears in DICD theory, and 
is thus an important quantity in CD models in general. This 
is a necessary application, both to establish the theory on a 
quantitative basis and to elicit the relative importance of the 
various charge transfer states. This work is in progress, and no 
attempt will be made to incorporate such work into this paper 
for a number of reasons. Firstly, in chemical applications, it 

1437 

I £ 

,U-
« : • " 

A 

. i" , - -
Rt 

Figure 3. Second-order induction mechanisms. The moments on the achiral 
chromophore A are mutually orthogonal, and the same for both mecha­
nisms. Orientations of the perturbing moment combinations for the two 
possible mechanisms are shown for the maximum inductive effect. 

is desirable to extract the maximum information without the 
aid of complex calculations, and this theory is formulated with 
precisely this aim in mind. Secondly, by comparing the same 
achiral chromophore in a series of ligand environments, the 
inducibility is essentially constant, so that the difference in the 
d-d CD spectra within such a series will be directly attributable 
to the differences in the ligand environment parameters. This 
is especially so considering that both second-order mechanisms 
depend on the same properties (the magnetic inducibility) of 
A. This then leads directly to the second type of application. 

(2) Semiquantitatively. In such applications, the effect of the 
ligand environment only is considered explicitly, and combined 
with qualitative symmetry arguments for finite magnetic in-
ducibilities of A. We shall see in fact that such applications are 
sufficiently quantitative to make some sensitive predictions for 
comparison with experimental data. Furthermore, it is in this 
form that the theory is without doubt of most value to the 
chemist, as the ligand parameters in most cases can be inter­
preted through the basic concepts of charge, polarizability, and 
dynamic inducing power (which in turn are related directly to 
simple oscillator strengths), and subsequently used to establish 
a theoretical basis for the empirically determined sector 
rules. 

In the following applications, two classes of metal complexes 
will be considered. Typical of nonpolar complexes are the tris 
(bidentate) complexes in which the chirality of the complex 
derives from a chiral disposition of the ligands about the metal 
ion, and not in the chirality of the ligands themselves (the li­
gands generally being achiral). These are found to have a rel­
atively intense d-d CD,13 and can only exploit the RJ mecha­
nism in the dipole approximation. The polar complexes we shall 
consider are the amino acid chelates, in which the chirality does 
not derive from a chiral disposition of the ligands, but from the 
intrinsic chirality of the ligand itself. Such complexes are found 
to have a weaker d-d CD.13 Both the Rs/ and the R* mecha­
nisms could potentially lead to the CD in these cases, but we 
shall show that the latter leads to a better agreement with the 
observed experimental results. In both series of compounds, 
therefore, it would seem that the dynamic inducing power (due 
to the whole chelate system in the tris chelates, and due to the 
intrinsic chirality of the separate chelates in the amino acid 
complexes) of the ligand system is the property leading to the 
d-d CD, so that it constitutes a new and important parameter 
in the CD theory of metal complexes. 

It is worth at this stage referring briefly back to the precise 
definition for RJ 

Ri = - i m \ v ^ 0 t ' v " ) v ^ 0 v ^ ^ . < (I6) 

where V is the dipole-dipole interaction operator defined in 
eq 11. Although the achiral chromophore may be characterized 
by its magnetic inducibility, and the perturber by its dynamic 
inducing power, the overall CD (RJ) still depends on the rel­
ative orientation of the moments on B and those on A. Thus 
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the magnitude of the CD due to a particular perturber B will 
depend on its relative orientation with respect to the achiral 
chromophore moments. In cases where the achiral chromo-
phore is the same, but there are a number of perturbers B in 
the ligand system, it follows immediately from eq 16 that the 
total CD of the complex may be written in terms of the con­
tributions Ri(Bi) from the individual perturbers B,- as 

Ri = ZRi(B1) (17) 

This equation forms the basis of additivity rules for d-d CD, 
to which we shall return later. 

The Dynamic Inducing Power of Tris Chelates. The types 
of complexes that should exploit the Ri mechanism most ef­
fectively are those with a number of orthogonal and strongly 
allowed electric dipole transitions in the ligand environment, 
leading to a strong dynamic inducing power of the ligand 
system. Perhaps the best examples are the Z)3 tris (bidentate) 
complexes with ligands such as (phen), (dipy), and (en). These 
ligands have strongly allowed long axis polarized electric dipole 
transitions which are skewed in a chiral configuration about 
the metal ion and couple together to give resultant electric 
moments which are both strong and orthogonal, leading, as we 
shall see, to a strong dynamic inducing power. For such com­
plexes, which are generally nonpolar, this is the only second-
order AICD mechanism capable of leading to CD of the d-d 
transitions. Mason14 has found a correlation between the ligand 
polarizabilities and the d-d CD, and rationalized this in terms 
of a dynamic coupling term involving a dipole-hexadecapole 
interaction. Such a correlation has been found experimental­
ly.13 We shall see, however, that this dependence on the ligand 
polarizabilities is also a feature of the R\ mechanism, and it 
is postulated here that the latter mechanism is responsible for 
the observed CD. 

The chromophores for such complexes may be chosen in the 
following way. Although the metal ion and the six ligating 
atoms in an [VI(LL)3 complex have Of, symmetry, the achiral 
chromophore is taken to include the metal ion d states and the 
charge transfer states adapted to Sf, symmetry. This is done 
as the charge transfer states are found to be sufficiently per­
turbed by the chelate system to lead to a uniquely defined z axis 
(along the 56 rotation axis). The ligand system has effective 
Z)3 symmetry, which is a chiral group as required. The exact 
model of the ligand system will be defined later. 

We can dispense with the achiral chromophore first. Con­
sideration of the state selection rules for A shows that two d-d 
transitions may become CD active:9 (1) the Ag -* Ag through 
an intermediate charge transfer state of symmetry Eu; (2) the 
Ag —*• Eg through an intermediate charge transfer state of 
symmetry A11 or E11. Whether one or both appears depends 
purely on the energy and intensity of the charge transfer 
bands. 

The effect of the ligand system through its dynamic inducing 
power may now be estimated by modeling the system in the 
following way. As the individual ligands have zero inducing 
power (as they are separately achiral), the states u and v must 
be states of the coupled ligand system as a whole, and may be 
developed in terms of the individual ligand states using simple 
exciton theory.14'15 In this way, the dynamic inducing power 
should be expressible in terms of the properties of the individual 
ligands and their geometry about the metal ion. Each ligand 
is characterized by a single excited state r and ground state 0 
such that the electric dipole transition moment is long axis 
polarized. Writing the ligand product functions in the form 

1000) = |0>, |0> 2 |0> 3 

where 1,2,3 indexes the separate ligands, there will be three 
excited states which represent the symmetry-adapted exciton 

functions (chosen to be real for convenience) (eq 18-20). i,j 
index the two components of v, which is doubly degenerate. 

|u> = ^ ( | r 0 0 > + |0r0> + |00r» (18) 

|i>,>= ^ 2 (IrOO)-IOrO)) (19) 

\vj) = - £ - ( 2 | 0 0 r ) - | r 0 0 ) - |0r0» (20) 
VO 

Letting 

M?' = <0|Ml|r>,M?° = <0|M1|0), M̂  = <r|/*,|r> 

where n\ is the intrinsic electric dipole operator of ligand 1, the 
following matrix elements are readily deduced (eq 21-25). It 
follows that the inducing power for the whole ligand system 
summed over the exciton degeneracy reduces to eq 26. 

M"° = 4 T ^ I 0 + ^ ° + ^ 0 ) (2D 
Vi 

M0"'' = ^ (M?' - Hf) (22) 

^ = - L ( 2 ^ - ^ - ^ ) (23) 

V"" = ^ (Mi' - M?0 - [M'/ " Mf0]) (24) 

^" = 3^2 (1W{ ~ M?>1 ~ [M" ~ ^ 1 ~ 1 M " ~ M°°]) ( 2 5 ) 

^(M?'X[Mr-M?0])-(M2° + M50) (26) 

The magnitude of the above is directly proportional to |M°' |2 , 
which in turn is proportional in this one-state ligand model to 
the polarizability of the individual ligands. The observed de­
pendence of the d-d CD on the polarizability of the ligands in 
these systems is thus predicted by the Ri mechanism. 

For the (phen), (dipy), (en) series of a particular metal ion, 
the magnetic inducibility is essentially constant, so that the d-d 
CD of M(phen)3, M(dipy)3, and M(en)3 is directly propor­
tional to the inducing powers of the respective ligand systems, 
and thus the ligand polarizabilities. The relatively large d-d 
CD for such complexes thus follows directly from their large 
dynamic inducing powers. The other factor appearing in eq 26 
is simply the difference of the permanent dipole moments of 
the ligand in the excited and ground states, and will be directed 
along the line joining the metal ion to the center of the re­
spective ligand. The energy splitting of the u and v states has 
a negligible effect on the CD, and it is possible to put tu = «t 

= Ir-
The assignment of absolute configurations of these tris 

(bidentates) has been attempted by Mason through the CD 
of the ligand system itself.13'14 The u and v states determined 
above aresthemselves CD allowed from the ground state, so 
that two bafds of opposite sign appear in the vicinity of the li­
gand transition energy, but with an energy splitting depending 
on the degree of coupling of these ligands. The assignment 
depends on the energy order in which these states appear, so 
that the energy splitting must be estimated with some degree 
of accuracy. Unfortunately, this is not a simple task, and it has 
been suggested that Mason's calculations are not always reli­
able for assigning absolute configurations on this basis because 
of the extreme sensitivity of this quantity to the interligand 
coupling.13 The d-d CD, however, has been shown above to be 
independent of the energy splitting, as the ligand system is 
essentially seen by the metal ion as an "oriented gas". Thus it 
would seem that absolute configurations may be more reliably 
assigned through the d-d CD, as the only quantity depending 
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Table I' 

At(max) [CuL] Ae(max) [CuL2] 
Amino acid (i) (ii) Ratio (ii)/(i) 

L-AIa 
L-Phe 
L-Trp 
L-VaI 
L-Pro 
L-Met 

-0.021 
-0.074 
-0 .152 
-0.055 
+0.193 
-0.070 

-0.078 
-0.255 
-1 .175 
-0.260 
+0.312 
-0 .202 

3.7 
2.9 
7.2 
4.7 
1.6 
2.9 

" All data from ref 13 in which original references are collated. 

on the absolute configuration is the dynamic inducing power, 
which in principle may be calculated explicitly and relatively 
accurately. 

The Dynamic Inducing Power of Amino Acid Chelates. We 
consider now a series of polar metal complexes in which the 
ligands are intrinsically chiral: the set of bidentate (a-ami-
nocarboxylato)/metal ion complexes, and, in particular, the 
mono and bis complexes of the Cu(II) ion (Figure 4). The 
achiral chromophore comprises the d-d transitions of the 
Cu(II) ion in an approximately D^ environment, and the 
charge transfer states with the directly ligating atoms. The 
application of the state selection rules to the achiral chromo­
phore shows that the following d-d transitions are allowed 
through the bracketed charge transfer states: 2B ]g —»• 2Eg(E11, 
B211); 2Bi8 -*• 2B2g(Eu). As the bis complexes have twice the 
number of ligating atoms, we may expect the E11 charge 
transfer state to be roughly twice the intensity of that of the 
mono complex, and similarly the magnetic inducibility of the 
bis should be about twice that of the mono. 

The R2 mechanism leads to the appearance of CD at both 
these transitions. The dynamic inducing power of each amino 
acid ligand is an intrinsic constant of the ligand itself, and it 
is not possible to estimate this quantity as readily for these li­
gands without some recourse to their detailed electronic 
structure. However, we can exploit its transferability as an 
intrinsic constant of each particular amino acid ligand. It will 
be a function of the substituted group on the a carbon of the 
acid, and should not vary dramatically if the substituted groups 
are similar (e.g., simple alkyl substituents). We can make some 
deductions about the d-d CD if the R2 mechanism is operative 
in the following way. 

The bis trans complexes may be thought of as a simple su­
perposition of two mono complexes, with one rotated through 
180° about an axis perpendicular to the chelate plane. As this 
rotation is a symmetry operation of the bis complex as a whole, 
the dynamic inducing power of the separate ligands is simply 
additive. As mentioned above, however, the magnetic induci­
bility of the bis achiral chromophore is twice that of the mono, 

Figure 4. Conformations of the ligands L-alanine and L-proline. Only the 
a-carbon substituents are assumed to lie outside the plane of the che-
late-metal bonds. Hydrogens are not shown. 

so that the overall d-d CD of the bis trans complex should be 
about four times that of the mono if the complex is taken to 
have an ideal planar geometry. Assuming that the trans pre­
dominates in solution,16 the experimental results13 shown in 
Table I for the 2B)g -» 2Eg transition are in remarkably good 
agreement with the predictions of this model. The results for 
the 2Big -* 2B2g transition, though not shown, give similar 
agreement, the d-d CD being about one-tenth and of the op­
posite sign to that of the 2E8. The one anomalous result in the 
table is that proline gives the opposite sign. As proline is un­
usual in having a ring structure involving the ligated nitrogen, 
this simply suggests that the dynamic inducing power of the 
proline ligand is opposite in sign to that of the simpler amino 
acids—a feature which should transfer to other metal chro-
mophores and other transitions. This is found to be the 
case.13 

The Mixed Static/Dynamic Mechanism. The amino acid 
complexes are polar, and could conceivably induce CD in the 
d-d transitions through the /?|'d mechanism. The ligand system 
could then be represented by (1) a static electric field due to 
the a-carbon substituents, directed perpendicular to the chelate 
plane; and (2) the ir-7r* transition moment of the carbonyl 
chromophore polarized in the chelate plane along the C = O 
axis. It is readily shown from eq 9 that this can lead to CD 
activity of the 2Eg transition of the metal ion, but not the 2B ig 

—• 2B2g (which would require an out-of-plane component of 
the carbonyl transition moment). As both are observed to be 
active, this suggests that this mechanism is not responsible for 
the CD. This is corroborated by the relatively low polarity of 
the substituents responsible for the electric field, and by the 
fact that the bis complexes would have eight times the d-d CD 
of the mono complexes if this mechanism were predominant 
(twice the number of carbonyl groups, twice the static field, 
and twice the magnetic inducibility). Thus we may safely as­
sume that the R2 mechanism applies to these complexes as well 

Table II. Transformation Properties of nm Products 

Polarizations 
Symmetry groups yy xy yx X2(I) yz(2) 

c, 
C2 

cih 
Cn (« > 2) 
C2, 
Cm (n > 2) 
D2 
Dn (n > 2) 
S4 
Did 
T, O 
C„h, D„h (n > 1) 
S2, S6, DM, Tn, Tj, On 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

yy 
yy 

XX 

yy 
XX 

—xx 
— XX 

XX 

ZZ 

ZZ 

ZZ 

ZZ 

ZZ 

XX 

xy 
xy 

xy 
xy 
xy 

xy 

yx 
yx 

-xy 
yx 

-xy 

xy 

None 

xz 
xz 
xz 

yz 
yz 
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Table III. Transformation Properties of pn Products 

Svmmetrv grou 
(K > 2) 

C1, S2 

Cu, Cj, C2/, 
Cn. C„i,, S4. Sf1 

C2,, D2, D21, 
Cm-. Dn, TJ„i,. D2li, 
T. Th. Td. O. On 

ps 

D3d 

XX 

XX 

XX 

XX 

XX 

XX 

XX 

yy 

yy 
VV 

XX 

yy 
XX 

XX 

ZZ 

ZZ 

ZZ 

ZZ 

ZZ 

ZZ 

XX 

Polarizations 
xy 

XY 

xy 
xy 

yx xz(2) 

VX XZ 

yx 
-xy 

yz(2) 

VZ 

despite their polarity, but because the dynamic inducing power 
of these ligands is considerably less than that of the system of 
chirally disposed ligands of the tris bidentates , the d - d C D is 
comparably smaller. 

Additivity Rules 

One of the important features of the AICD model is that it 
predicts simple additivity of the effects of perturbers on dif­
ferent ligand sites according to eq 17. This additivity rule holds 
not only for different groups attached to the same ion, but may 
be extended to the following situation. Consider the complex 
AB1By . . . (the composite complex), and the complexes AB,-, 
AB;, . . . (the substituent complexes) where A is the same 
achiral chromophore, and the groups B,, B ; , . . . have the same 
relative orientations with respect to A in the composite complex 

as they do in their respective substituent complex. Then eq 17 
will still hold in the form 

^ ( A B , B ; . . .) = /^(AB,) + Rd
2{ABj) + ... (27) 

For example, it is found experimentally17 that the CD of the 
polypeptide complexes involving the alanine and glycine (the 
latter being the achiral form of the former with a hydrogen 
replacing the methyl) groups are related in the following way 
for copper: 

CD(AIa-AIa-AIa) = CD(GIy-GIy-AIa) 
+ CD(GIy-AIa-GIy) + CD(AIa-GIy-GIy) 

Each complex has the same achiral chromophore and thus the 
same magnetic inducibility. Although the Ala groups in the 
composite complex each have the same relative orientation 
with respect to the achiral chromophore as the Ala in the 
corresponding substituent complex, the Ala groups in the 
different substituent complexes have different orientations with 
respect to each other, so that the substituent complexes do not 
necessarily have the same CD. Both the additivity and the in­
equality of the CD spectra of the individual substituent com­
plexes are predicted by the Rj mechanism, and observed ex­
perimentally.17 

These arguments are readily generalized, and constitute a 
rationale for why additivity schemes have worked so well for 
a wide range of complexes. 

Table IV. Transformation Properties of /j,fim Products 

Symmetry 
group xxx yyy zzz xxy(3) >'.v.x(3) xxz(3) 

Polarizations 
yyz(3) zzx(3) zzy(3) xyz xzy zxy yxz yzx zyx 

CYS2 

C\h. C2, C2/, 
C3. S6 
C4, Cf,. S4 
Cnh (n > 3) 
C2,, D2, D2n 

C3,, Di. Dij 

C4,, D4. D4n 

D2d. C6,. 
Df,. Da,, Dbi, 

xxx yyy 

yyy 

yyy 

-yyy 

-yyy 

yyx 

xxx 

XXZ 

XXZ 

XXZ 

yyz 
yyz 
XXZ 

zzy xyz 
xyz 
xyz 

xyz 

xyz 
xyz 

xy: 

xzy zxy yxz yzx zyx 
xzy zxy yxz yzx zyx 
xzy zxy —xyz —xzy —zxy 

xzy zxy -xyz 

xzy zxy yxz 
xzy zxy —xyz 

-xzy -zxy 

yzx zyx 
-xzy -zxy 

xzy zxy —xyz —xzy —zxy 

Td, O. Oh 

T, Th 

Table V. Transformation Properties of MA/I Products 

Symmetry 
group xxx yyy zzz xxy(3) yyx(3) xxz(3) 

Polarizations 
yyz(3) ZZX(I) 

xyz 
xyz 

zzy(3) xyz 

—xyz 
xzy 

xzy 

xyz 
xyz 

zxy 

—xyz 
xzy 

yxz 

xyz 
XYZ 

yzx 

-xyz 
xzy 

zyx 

C1 
Cu 
C-, 
C 3 

C4, Cf, 
Cih 
C2,-
C3,-
C 4„ C6, 
D2 

O 3 

D4, Dh% 
Dih 
S4 

D2h 

T 
Td 

O 
Oh. Th, D 
Sf,. S 

xxx yyy 

xxx yyy 

xxx yyy 

xxx yyy 

yyy 

,, Did, D2„h\ 
• C2nh I 

xxy 
xxy 

•yyy 

'yyy 

yyx 
yyx 

—xxx 

—xxx 

—xxx 

XXZ 

XXZ 

xxz 
XXZ 

XXZ 

XXZ 

xxz 

yyz 

yyz 
XXZ 

XXZ 

yyz 
XXZ 

XXZ 

ZZX 

ZZX 
zzy 
zzy 

xyz 

xyz 
xyz 
xyz 

xzy 

xzy 
xzy 
xzy 

zxy 

zxy 
zxy 
zxy 

yxz 

yxz 
—xyz 
—xyz 

yzx 

yzx 
—xzy 
—xzy 

zyx 

zyx 
—zxy 
—zxy 

VVY 

-yyy 

-yyy 

xyz xzy zxy yxz yzx zyx 
xyz xzy zxy —xyz —xzy —zxy 
xyz xzy zxy —xyz —xzy —zxy 

xyz xzy zxy xyz xzy zxy 
xyz xzy zxy xyz xzy zxy 
xyz xzy xyz xzy xyz xzy 
xyz xyz xyz xyz xyz xyz 
xyz —xyz xyz —xyz xyz —xyz 

None 



Schipper / CD of the d-d Transitions ofChiral Complexes 

Sector Rules 

The use of the CD of an achiral chromophore as a tool in the 
study of the conformation of the molecule as a whole has led 
to empirical sector rules relating the sign of the CD of the 
achiral chromophore to the conformation of the rest of the 
molecule. Such rules have enjoyed much success, especially 
for organic molecules,18 and have been stimulated mainly by 
the octant rule for the carbonyl chromophore. First-order 
dynamic coupling models employing an electric quadrupole 
transition moment on the carbonyl chromophore are capable 
of justifying the octant rule, and thus of giving it a theoretical 
foundation. 

Surprisingly, and perhaps somewhat paradoxically, one of 
the main reasons for the inadequacy of many of the previous 
theoretical approaches to the d-d CD problem stems from the 
assumption that the empirical sector rules for d-d CD have 
a theoretical basis; i.e., that the sectors defined in the empirical 
sector rules must play some role in the interaction mechanism 
between the achiral chromophore and the ligand system. Such 
an approach fortuitously works for the carbonyl chromophore, 
as a relatively low-order moment (quadrupole) is involved. 

For d-d CD, an empirical hexadecant sector rule has been 
postulated,13 and works for many complexes. It has therefore 
stimulated the first-order dynamic coupling approach which 
under 0/, symmetry requires a hexadecapole moment, and thus 
leads to the hexadecant rule. Unfortunately, exceptions to the 
rule are sufficient to question its general validity, so that a 
better approach to the problem (and the one explored in this 
paper) would seem to be the following: (1) determine all pos­
sible induction mechanisms; (2) look at the symmetry or se­
lection rules for the interacting system for each mechanism; 
and (3) then determine the possible conditions when or if these 
symmetry rules either reduce to the empirical sector rules or 
are compatible with then. From the results of this work, it 
would seem that sector rules for complexes are an unnecessary 
complication, and that it is more important and efficacious to 
study the geometrical aspects of the relevant induction 
mechanism directly. Strictly speaking, the /?;> mechanism 
suggests that the hexadecant rule is without foundation. 

Summary 
The applications discussed in this paper suggest that the 

AICD model, and in particular the /?•> mechanism, is capable 
of accounting for the observed properties of the CD of d-d 
transitions of metal complexes, extracting explicitly the de­
pendence on the chiral part of the perturbing ligand system. 
Although the applications discussed have been essentially 
qualitative, the explanations for the relative sign and magni­
tude for a range of seemingly unrelated complexes is too in-
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ternally consistent to be fortuitous. The model is also geared 
to quantitative studies, and such applications are underway. 
The latter should establish the R\ mechanism as being the 
predominant method of inducing CD in d-d transitions, and 
thus provide a unified theory for d-d spectra (both AICD and 
DICD). It will then be possible to use the theory to make 
confident predictions of absolute configurations and structure 
using CD techniques. 
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Appendix 
The combinations of polarizations that transform as the 

totally symmetric representations are summarized in Tables 
H-V. The products nn and /tm transform as second-rank polar 
and axial tensors, respectively, and win, jt̂ im as third-rank 
polar and axial tensors. The quantity zzx(3) represents the 
three quantities obtained by permutation of the last coordinate, 
and so on. Components that are related by symmetry are in­
dicated in the tables. For example, consider the CD strength 
operator under S4; viz., jfm. For second-rank axial tensors, yy 
transforms as — xx, xx as xx. Thus xx-yy transforms as the 
totally symmetric representation, so that the CD strength must 
vanish (as expected) solely on the basis of the operator selection 
rules. Another important example is the product mim under 
Oh, whose only totally symmetric components must have the 
form /i X fi-m as seen from Table V. 
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